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We report the experimental observation of Shil’nikov-type attractors in the reflection of optothermal non-
linear devices, evidencing homoclinic phenomena associated with a variety of saddle set configurations. Re-
current phase-space operations underlying the homoclinic dynamics are evidenced by analysis of proper Poin-
carésections. In the case of a saddle limit cycle, deterministic aperiodic evolutions are pointed out clearly by
means of high-order multibranched first-return maps.@S1063-651X~96!01106-3#

PACS number~s!: 05.45.1b, 42.65.Pc

I. INTRODUCTION

In recent years the crucial role played by homoclinic or-
bits in the mechanisms originating chaos in dynamical sys-
tems has become apparent@1,2#. Homoclinic orbits are tra-
jectories biasymptotic to a saddle limit set both forward and
backward in time. The homoclinic orbit characterizes a re-
current mechanism for global folding of the phase space,
while the saddle set provides stretching, folding, and con-
traction of the flow at a local level. According to the actual
saddle configuration, chaos may appear when a parameter is
varied towards the homoclinicity condition.

The simplest and most clear situation yielding homoclinic
chaos in dissipative systems is associated with the so-called
Shil’nikov-type attractors. Such attractors usually arise in
three-dimensional phase spaces from a growing periodic or-
bit that approaches an external saddle set to become ho-
moclinic to it. The saddle may be either an inward spiraling
focus or a limit cycle of diameter lower than the homoclinic
orbit radius. In cases of larger saddle cycles, the attractor
evolves in a different way, yielding the so-called Ro¨ssler-
type attractors. The bending of the orbit is so large in these
cases that it may be reinjected close to the inner fixed point
from which it was originated. After the Hopf bifurcation this
point has become an outward spiraling saddle focus and thus
the attractor evolution may involve homoclinicities of two
kinds associated with either the internal or the external
saddle set and heteroclinic connections between them@3,4#.
In any case a theorem by Shil’nikov@5# proves that complex
dynamics will occur near homoclinicity when an inequality
is satisfied between the eigenvalues of the linearized flow
around the saddle point, i.e., if the real eigenvalue is larger in
modulus than the real part of the complex eigenvalue. Com-
plex behavior always occurs when the saddle set is a limit
cycle @6#.

Attractor structures and bifurcation sequences in ho-
moclinic transitions have been investigated by means of two-
dimensional Poincare´ maps constructed by considering the
linear evolution near the saddle and a nonlinear reinjection
mechanism associated with the homoclinic connection@4,7–
10#. Such a kind of construction yields one-dimensional first-
return maps in the strong area contraction limit, which con-
sist of either multiple humps or multiple branches accumu-
lating towards the homoclinicity point and which constitute a
clear signature of the homoclinic bifurcation. Map analysis

points out a rather complex process that may involve accu-
mulated cascades of periodic windows bounded by tangent
bifurcations and period-doubling sequences, the creation of
successive horseshoes, the occurrence of a variety of subsid-
iary homoclinic connections, and other more subtle phenom-
ena @1,2#. The process appears to be extremely sensitive to
the control parameter. The problem becomes more critical as
the saddle becomes closer to the Shil’nikov condition be-
cause the interval of the control parameter leading to com-
plex behavior then becomes narrower and closer to the ho-
moclinicity point.

On the other hand, the evolution of Ro¨ssler-type attractors
involves homoclinicities of two different saddle sets and het-
eroclinic connections between them. The process usually
covers a large interval of the control parameter and the ob-
servation of aperiodic behaviors appears to be easier than in
the Shil’nikov-type case. As a matter of fact, experimental
observation of multiple-structure return maps has been re-
ported in the Belousov-Zhabotinskii reaction@11#, in a laser
with feedback@12#, in a laser with a saturable absorber@13–
15#, in the plasma of a glow discharge@16#, and in an opti-
cally bistable device like the one here considered@17#. Ho-
moclinic chaos has been also evidenced in a modified Van
der Pol electrical oscillator@18#, in a catalytic oxidation of
methanol@19#, and during copper electrodissolution@20#. In
most of these experiments homoclinicity appears associated
with an outward spiraling saddle set and the observed phase
portraits are in the form of folded bands. Only the experi-
ment on a laser with feedback by Arecchiet al. @12# corre-
sponds to an inward spiraling saddle focus even if, in this
case, the trajectory visits the neighborhoods of other two
saddle points.

In this paper we report the experimental observation of
Shil’nikov-type attractors in the response of an optothermal
nonlinear device irradiated by a laser beam, evidencing ho-
moclinic phenomena associated with a variety of saddle set
configurations, i.e., focus points either fulfilling or not the
Shil’nikov condition and limit cycles generated by Hopf bi-
furcation of the saddle point. Particular emphasis is given to
the case of a saddle point fulfilling closely the Shil’nikov
condition and providing really clear phase portrait structures
of the Shil’nikov type. The recurrent phase-space operations
underlying the homoclinic dynamics are pointed out by
analysis of proper Poincare´ sections and a two-stage return
map is used to show how critical the noise influence on the
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deterministic evolution is. Good agreement is found with
predictions of a Poincare´ map model@9#. In the case of ho-
moclinicity to a saddle limit cycle, deterministic aperiodic
evolutions are pointed out clearly by means of high-order
multibranched first-return maps.

II. OPTOTHERMAL NONLINEAR DEVICE

The nonlinear device is based on the so-called optother-
mal bistability with localized absorption~BOITAL ! @21# and
consists of a Fabry-Pe´rot cavity where the input mirror is a
partially absorbing film, the rear mirror is a high-reflection
dielectric coating, and the spacer between mirrors is a
multilayer of transparent materials having alternatively op-
posite thermo-optic effects. When illuminated by a light
beam, the interferometer response is affected by a nonlinear
feedback loop involving~i! light absorption in the input mir-
ror film and the consequent heat propagation from the local-
ized source through the cavity spacer,~ii ! temperature effects
on the cavity optical length by thermal expansion and refrac-
tive index variation, and~iii ! light interference effects where
absorption takes place. Nonlinearity is exclusively contained
in the functionA(c) describing the interferometer absorp-
tion as a function of the round-trip phase shiftc and related
to the Airy function of the interferometer. The device non-
linearity enhances with the interferometer absorption con-
trast, which requires proper design of the input reflective
film, and with spacer parameters determining the feedback
loop efficiency, i.e., thicknesses, thermal and thermo-optic
coefficients of the multilayer materials@21#.

The nonlinear feedback is responsible for the multistable
stationary response of BOITAL e´talons and, in the case of
multilayer spacers, is affected by the competing phase-shift
contributions of the various layers. The relative position of
the layers with respect to the localized heat source introduces
time delays between such contributions and, in this way, it is
possible to have sustained oscillations and other sorts of in-
stabilities in the response of the system. Thus time dynamics
in multilayer BOITAL devices is exclusively based on heat
propagation from the absorbing mirror through the cavity
spacer, while light provides an instantaneous nonlinear feed-
back by testing the spacer temperature through its own phase
shift and transferring such information to the localized heat
source by means of interference effects.

Under some simplifying assumptions, the BOITAL cavity
with a multilayer space may be described by a set of homo-
geneous heat equations subject to the proper continuity and
boundary conditions, of which the one describing the local-
ized heat source is nonlocal and nonlinear@22#. The station-
ary solution of this partial differential equation~PDE! system
as a function of the incident intensity yields a multivalued
branching diagram with features depending on the interfero-
metric function, but not on the multilayer structure. The
spacer parameters affect the stationary branching diagram
through a scale factor only. The linear-stability analysis point
out that the effective dimension of the dynamical problem
may be considered equal toN, the number of layers into the
cavity spacer, and that the system may experience up to
N-1 Hopf bifurcations@22#. Extensive numerical simulations
for N up to 3 allowed us to verify the linear-stability conclu-
sions and to deduce that a suitable basis for the reduced

phase space is the one defined by the partial phase shifts
associated with the various layers@22#. We have also shown
that the PDE system may be reduced to aNth-order model of
ordinary differential equations~ODEs! that involves the par-
tial phase shifts as variables and exhibits local and global
dynamics very similar to the ones of the original system@23#.

A comment is worthwhile concerning materials exhibiting
phase-shifts effects with different inertia with respect to ther-
mal excitation@24#. In most materials, mechanical expansion
and refractive index variation take place simultaneously and
their light phase-shift effects are characterized by the single
coefficient resulting from the addition~or subtraction! of par-
tial coefficients. But this is not the case for some composite
materials in which mechanical expansion seems to work
slower than refractive index variations. Such a kind of ma-
terial introduces two time-delayed phase-shift effects that, on
the other hand, may be competing since usually such mate-
rials have a negative thermo-optic effect. As a consequence,
layers of these materials introduce additional degrees of free-
dom within the BOITAL cavity and effective dimensions
higher thanN may be obtained withN-layer spacers. It is
really useful from the experimental point of view because the
lower the number of layers the easier the device manipula-
tion. On the other hand, the ODE model may be easily ex-
tended to describe BOITAL systems containing such materi-
als. In that case the given layer is described by two partial
phase shifts, each one subject to the same dynamic equation
but with proper adjustments on the relaxation time constant
and thermo-optic coefficient.

The BOITAL systems exhibit a rich variety of homoclinic
phenomena. In the case of bidimensional devices, the occur-
rence of oscillations through a Hopf instability and a variety
of homoclinic bifurcations without complicated orbit struc-
ture have been observed both numerically and experimen-
tally @25#. This paper deals with tridimensional systems and
the experimental results show the occurrence of Shil’nikov-
type attractors associated with a variety of saddle sets. In a
previous paper we have shown that the same kind of device
may originate folded chaotic bands of the Ro¨ssler type@17#.
In fact, both experiments and numerical simulations point
out clearly strong similarities between the dynamics exhib-
ited by the third-order system, currently known as the
Rössler model@26#, and by the tridimensional BOITAL sys-
tems when a unique pair of saddle-node points are involved.
The mathematical origin of such similarities has been evi-
denced by comparing canonical forms of both the BOITAL
third-order ODEs and Ro¨ssler models@23#.

III. ELEMENTS OF A POINCARE´ MAP MODEL

A useful tool for analysis of homoclinic bifurcations is
provided by Poincare´ maps constructed by decomposing the
dynamics into two distinct stages, i.e., the linear evolution
near the saddle characterized by the corresponding eigenval-
ues l and r6 iv, and a nonlinear reinjection mechanism
associated with the homoclinic connection@4,7,8#. Such a
kind of Poincare´ map has been generalized recently to permit
the simultaneous description of homoclinic tangencies to ei-
ther a point or a periodic orbit@9,10#. We introduce here
some elements of this map for the case of a focus point
because they will be used in the analysis of experimental
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results. Using cylindrical coordinates centered on the point
and considering the scheme outlined in Fig. 1@9#, we define
the first stage asF(r51,wn ,zn)5(r n8 ,wn8 ,z51), with

r n85exp~rtn
i !, ~1a!

wn85wn1vtn
i , ~1b!

where

tn
i 52

1

l
lnzn ~2!

represents the flying time within the cylinder. Within the
linear region, the saddle stable manifold remains contained
in thez50 plane, while the unstable manifold goes along the
z axis. According to numerical simulations@22# and experi-
mental attractors, in which strong contraction in a certain
direction is evident, the second stage is defined as the map
G(r n8 ,wn8 ,z51)5(r51,wn11 ,zn11), with

zn115b1 f r n8coswn8cosg, ~3a!

wn1152~zn112b!tang, ~3b!

where full contraction along they axis is assumed, the factor
f,1 describes a global compression in the section plane, the
angleg describes some rotation of the contracted flow, and
b gives thez position at which the unstable manifold im-
pinges on the lateral surface with respect to the stable mani-
fold, i.e.,b50 means homoclinicity. The strong contraction
limit implies that mapG reinjects always in a little straight
segment andg is the angle this segment forms with thez
axis. The full contraction implies also that the dynamics may
be fully described by one-dimensional maps as the ones ob-
tained in first-return representations of either time returns or
phase-space coordinates.

One-dimensional~1D! return maps for the space variables
may be easily derived from Eqs.~3!, ~1!, and~2!, while ad-
ditional assumptions concerning the external reinjection time
te are necessary in order to obtain time return maps. Both

experiments and numerical simulations suggest as reasonable
to suppose the reinjection time as given by

tn
e5Te2b~zn112b!5Te2b f r n8coswn8cosg, ~4!

whereTe is the reinjection time on the unstable manifold and
b is a factor characterizing some time spread in proportion to
the z distance between the given trajectory and the unstable
manifold. If the external time spread is not significant with
respect to the total return time, it is reasonable to assume
te as a constant@12# and the first-return map may then be
characterized by the internal time map derived from Eqs.~2!,
~3a!, and~1! as

tn11
i 52

1

l
ln„b1 f exp~rtn

i !

3cos$vtn
i 2@exp~2ltn

i !2b#tang%cosg…. ~5!

Nevertheless, if significant, the external time spread may be
pointed out by analyzing internal orbit correlations as the
ones expressed by the two-stage map

tn
e~ tn

i !5Te2b f exp~rtn
i !cos$vtn

i 2@exp~2ltn
i !2b#tang%

3cosg, ~6a!

tn11
i ~ tn

e!52
1

l
lnS b1

1

b
~Te2tn

e! D , ~6b!

FIG. 1. Schematic representation of the Poincare´ map model
used to characterize the homoclinic bifurcation associated with an
inward spiraling saddle focus.

FIG. 2. Time evolution of the reflected power and reconstructed
phase portrait for different incident light powers on the glass-
silicone-glass system at 22°C. The signal at 49.8 mW includes a
transient illustrating the homoclinic transition to a different oscillat-
ing state.
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where the internal and external times are given by Eqs.~2!
and~4!, respectively. As it will be shown below, such a kind
of two-stage representation is also useful for analyzing noise
effects upon the dynamical evolution.

IV. EXPERIMENTAL DETAILS

Experiments were performed with nonlinear devices
based on two different spacer structures within the cavity
determined by a partially absorbing metal film and a high-
reflection dielectric mirror. One device was spaced with a
glass–silicone@27# –glass trilayer of thicknesses 400mm,
250mm, and 1 mm, respectively, and the other with a glass–
optical adhesive@28# bilayer structure of 140 and 590mm,
respectively. In the case of glass, thermal expansion works as
a positive effect (1025 K 21), while the silicone and the
optical adhesive produce negative phase-shifting effects es-
sentially due to refractive index changes. Relative variations
of the optical path with temperature for these materials were
estimated to be24.731024 and 23.231024 K 21 at 22
°C, respectively. No separate estimations for thermal expan-
sion and thermo-optic coefficients were performed. The op-
tical adhesive exhibits thermal expansion and the thermo-
optic effect with different time inertia@24# and the glass-
adhesive bilayer system then behaves tridimensionally. On
the other hand, the phase-shifting coefficients exhibit a sig-
nificant temperature dependence and such a fact offers a way
for fine adjustment of the spacer structure. With this aim, the
nonlinear mirror was placed on a thermoelectric cooler de-
vice providing a range of background temperatures.

The cavity mirrors were a nickel-chrome~80:20! film of 6
nm thickness coated on the first layer of glass and a
TiO2-SiO2 multilayer stack coated either on the rear glass
layer, in the trilayer structure, or on a 1-mm glass substrate
external to the cavity, in the bilayer system. The dielectric
mirror reflection was high (.0.98 for the operating wave-

length! while the metallic mirror had external and internal
reflections of 0.17 and 0.23, respectively, and transmission
of 0.46. The cavity finesse was really low, but it must be
stressed that cavities with absorbing input mirrors behave
very differently from the usual lossless case. Contrast and
finesse may be independent in cavities with input mirror ab-
sorption and high contrast may be achieved if the transmis-
sion and reflection phase shifts of the absorbing film are such
that the transmission and reflection of the interferometer
present in-phase intensities@21#. In our devices the output
intensities behave with a relative phase of about 0.1p and the
reflection varies from 0.07 to 0.88 while the transmission is
always lower than 0.005.

The device was irradiated with a continuous-wave laser
beam of 488-nm wavelength focused to a 0.3-mm-diam spot,
the reflected light was detected by means of a photodiode,
and the signal was digitized and stored in a computer. The
light beam was provided by an argon-ion laser and power
fluctuations of the output beam were reduced to less than
0.1% by means of an electro-optic modulator subjected to an
optical feedback loop. The stabilized beam was circularly
polarized with al/4 plate. The light polarization had no role
in the experiment because the nonlinear device contained
isotropic materials only and the light beam incidence was
almost normal. Nevertheless, thel/4 plate, jointly with the
output polarizer of the modulator, worked as an optical iso-
lator avoiding any return of light to the laser cavity and the
consequent instabilities.

V. RESULTS AND DISCUSSION

We report here some significant results illustrating ho-
moclinic bifurcations associated with a variety of saddle in-

FIG. 3. Time evolution of the reflected power and reconstructed
phase portrait for three incident powers on the glass-adhesive sys-
tem at 25°C.

FIG. 4. Four Poincare´ sections of the 37.2-mW phase portrait of
Fig. 3. Each section contains 138 points while the represented phase
portrait includes four orbits only.

5630 53R. HERRERO, R. PONS, J. FARJAS, F. PI, AND G. ORRIOLS



variant sets. Figure 2 presents time evolutions of the re-
flected light powerP for different values of the incident
power and for the case of the glass-silicone-glass trilayer.
The interferometric origin of the signal is responsible for
some details that have to be taken into account in order to
understand the observed wave forms fully. In effect, at light
powers such that nonlinear effects sustain phase-shift varia-
tions larger than 2p, the reflected power varies between its
maximum and minimum values with a sudden folding at
these points. Such folds are absent in the time evolution of
the phase shiftc and they have no dynamical significance.

Figure 2 shows also projected phase portraits obtained
from the time signals by an embedding technique. The rep-
resentations have been done in the three-dimensional space
defined byP(t), P(t1t), and P(t12t), with t almost
equal to one-quarter of the small oscillation period (t590
ms in the case of Fig. 2!. The reported phase portraits usually
represent five complete orbits, even if the recorded time sig-
nals contain always more than 100 long period oscillations.
Notice the influence of theP(t) interferometric folding in
the reconstructed phase portraits.

The presence of an inward spiraling focus, at which the
orbit gradually approaches, is clear from both the time evo-
lutions and phase portraits of Fig. 2. The number of high-
frequency oscillations and the period of the low-frequency
oscillation increase up to the homoclinic transition at 49.8
mW, in which the orbit is destroyed and the system goes to a
different oscillating state associated with another stationary
solution of the multistable branching diagram. The signals
always appear to be periodic. In effect, for the signal closer
to homoclinicity~49.2 mW!, the greatest Lyapunov exponent
calculated with the algorithm of Ref.@29# is 20.21T21,
whereT50.36 s denotes the period of the small oscillations.
On the other hand, by assuming a linear motion around the
saddle governed by eigenvaluesl andr6 iv, we obtained
v517.2 s21 and r522.4 s21 from the time signal, and
l50.01 s21 from a projection of the phase-space flow over
a direction close to the unstable saddle dimension. It is clear
that such eigenvalues do not fulfill the Shil’nikov condition
ur/lu,1.

A different situation may be seen in Fig. 3, where we
present results obtained with the glass-adhesive bilayer sys-
tem and for a thermoelectric cooler temperature of 25 °C.
Phase portraits have been reconstructed with an embedding
delay of 30 ms. The saddle eigenvalues estimated form the
case closer to homoclinicity (37.2 mW! have been found
equal to 4.4 and23.76 i66.1 s21. Such eigenvalues verify
the Shil’nikov condition very closely, suggesting that chaos
could appear very near homoclinicity only. The aperiodic
signal at 37.2 mW contains orbits including 5–14 high-
frequency oscillations and the corresponding greatest
Lyapunov coefficient has been found to be10.12T21, with
T595 ms denoting the period of high-frequency oscillations.
Details of the attractor structure may be appreciated in the

FIG. 5. Return time versus position for the points of the Poin-
carésection denotedD in Fig. 4.

FIG. 6. Return map representations for the 37.2-mW signal:~a!
first-return time map for sectionC, ~b! two-stage time return map
between sectionsB andC, and ~c! space coordinate versus flying
time for the two-stage map. Numeric symbols in~b! indicate the
number of high-frequency oscillations in the corresponding orbits.
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Poincare´ sections shown in Fig. 4, where each section con-
tains 138 intersection points. The sections correspond to dif-
ferently oriented planes and have been correspondingly en-
larged. The scales in mW indicate the metric length
associated with each represented plane. SectionA corre-
sponds to a section within the conical screw, close to the
saddle focus, and normal to the unstable manifold. Section
B is located at the end of the screw, normal also to the
unstable saddle manifold, and the representation is enlarged
20 times with respect toA. SectionsC and D have been
taken normal to the flow. The attractor section area is mini-
mum in C and we consider this point as the end of the
nonlinear reinjection initiated atB and the beginning of the
saddle influence region. The spiral structure clearly seen in
sectionA confirms the presence of a saddle-focus singularity
governing the flow in this phase-space region and, according
to the Poincare´ map model, its well defined shape indicates
that the reinjection flow reaches the saddle influence region
with a narrow line section almost parallel to the unstable
manifold, i.e., with a well definitewn value. In effect, elimi-
nating the time in Eqs.~1!, one obtains the parametric rela-
tion

r n8~wn8!5expF r

v
~wn82wn!G ~7!

that applies for anyz constant plane within the linear region.
By assuming a fixedwn value, the representation of Eq.~7!
for a given range ofwn8 values describe a segment of spiral
centered on thez axis, i.e., on the unstable manifold. The
radius attenuation per spiraling turn provides a direct esti-
mate forr/v in agreement with the values obtained from the
time signal. The length of the spiral and its approach to the

center indicate how close the system is to homoclinicity.
Furthermore, by proper numbering of intersection points we
have verified that the spiral points appear almost ordered
according to the previous longitudinal position on section
D, i.e., the spiral points inA move away from the center
according to the distance to one of the attractor ends in sec-
tion D. It then seems clear that the saddle stable manifold is
very close to this end of the attractor sectionD. Complemen-
tary information is provided by Fig. 5, where the return time
from D to D is represented versus the coordinateP(t) of the
departure points. The time asymptotic divergence confirms
how close to homoclinicity the system is.

From sectionA to C the flow section strongly contracts
with a slight asymmetry denoting stronger contraction in a
given direction. The spiral structure vanishes along the flow
under the combined action of contraction and noise and we
estimate the transverse size of sectionC as essentially due to
noise. FromC to D the attractor section exhibits one-
dimensional expansion~stretching! that may be associated
with saddle repulsion because the repulsion rate enhances
with the distance to the saddle attracting manifold.

The flow contraction points out that BOITAL systems are
strongly dissipative and the more pronounced contraction
along a given direction suggests one-dimensional Poincare´
sections and the consequent possibility of 1D return maps.
Nevertheless, Fig. 6~a! presents a first-return map obtained
for Poincare´ sectionC by representing the return time of an
orbit as a function of the return time of the previous orbit and
the absence of any structure suggests that noise is strong
enough to interrupt deterministic correlations between suc-
cessive orbits at high degree. Thus, even if a really low noise
level is apparent in the time evolution signals, the strong
flow contraction makes its influence especially crucial where

FIG. 7. Two-stage time return map~a! repre-
sented from the Poincare´ map model and~b! the
same with random noise introduced on the phase-
space variables at each map step. Positions on the
two Poincare´ map sections versus the previous
flying time between such sections,~c! without
noise and~d! with noise.
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the attractor section seems dominated by noise, i.e., in sec-
tion C of Fig. 4. The localization of noise effects upon the
attractor is pointed out by the two-stage time return map of
Fig. 6~b!. In this representationtn

i is the internal time spent
by a given orbit around the saddle, from sectionsC to B, and
tn
e is the reinjection time fromB to C for the same orbit.
Notice that intersection with the bisectrix have no signifi-
cance in this two stage return representation. The well-
defined structure oftn

e(tn
i ) indicates that the inner motion

determines the following reinjection time with a very limited
influence of noise, while the broad appearance oftn11

i (tn
e)

reflects a strong noise influence on the next internal time as a
function of previous external time. Each hump appearing on
tn
e(tn

i ) corresponds to orbits containing a given number of
high-frequency oscillations and then a numeric symbol may
be associated with it.

The two-stage time return map is reproduced very well by
the Poincare´ map model, as shown in Fig. 7. Figure 7~a!
represents Eqs.~6! with r523.7, v566.1, l54.4,
b5331024, b565, f50.12, g5p, andTe51.1. A con-
stant equal to21.1 has been added to the internal time given
by Eq.~6b! to compensate for differences in Poincare´ section
positions on the theoretical and experimental phase portraits.
Figure 7~b! shows the influence of a random noise intro-
duced on the phase-space variableszn , wn , r n8 , andwn8 at
each recurrent step of the map calculation, with maximum

amplitudes of 1.231024, 0.3, 331024, and 0.3, respec-
tively. Figure 7~c! shows that the ranges ofzn andr n8 values
cover intervals of about 531024 and 1.531023, respec-
tively, and it may be then realized that the noise amplitude
introduced represents 20% of such intervals.

Similar but complementary information is obtained from
the experimental map of Fig. 6~c!, where the coordinate
P(t) of points of either sectionB or sectionC is represented
as a function of the previous flying time fromC to B or from
B toC, respectively. The coordinateP(t) is close to the long

FIG. 9. Reconstructed phase portrait from the 75.4-mW signal
of Fig. 8.

FIG. 8. Time evolution of reflected power for different incident powers and for the same device as in Fig. 3, but at 18°C.
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dimension of the attractor sectionB and gives maps with the
best defined structure. On the basis of the Poincare´ map
model, the representations of Fig. 6~c! may be associated
with the equations

r n8coswn85exp~rtn
i !cos$vtn

i 2@exp~2ltn
i !2b#tang%,

~8a!

zn115b2
tn
e2Te

b
, ~8b!

which have been represented in Figs. 7~c! and 7~d!, without
and with the addition of noise, respectively. The relative ver-
tical positions of the two map structures have no significance
when compared to the experimental representation of Fig.
6~c!. It is seen that, according to the experiment, the noise
exerts a strong influence onzn11(tn

e), but not on the shape of
r n8coswn8(tn

i ). Thus we infer that the longitudinal position on
sectionB is well determined as a function of the previous
flying internal time, without a significant influence of noise,
while any deterministic correlation between the reinjection
position onC and the previous reinjection time seems lost.

A low level of noise may cause strong consequences for
just the same reason that chaotic dynamics may arise from
the extreme sensitivity of the flow when it reinjects towards
the saddle point close to homoclinicity. A bit of noise on the
reinjection coordinatezn causes hesitation between orbits
with a different number of high-frequency oscillations and
the consequent enlargement of the internal time range. Nev-
ertheless, the internal timetn

i and the corresponding outgoing
position from the saddle influence regionr n8coswn8 remain
very well correlated@Fig. 7~d!#. In the reinjection step, the
relative influence of noise is more pronounced on the rein-

jection coordinatezn11 than on the external timetn
e . Thus

tn
e even maintains a good correlation withtn

i @Fig. 7~b!#,
while zn11(tn

e) presents significant vertical broadening@Fig.
7~d!#. This z broadening is of the order of both the range of
z values and the homoclinicity parameterb and its conse-
quences on the next orbit evolution may be strong enough to
alter the deterministic evolution.

We have also investigated the two stage map representa-
tions of Fig. 7 in numerical time evolutions obtained by in-
tegration of the BOITAL PDE system@22#. In this case,
noise has been introduced in the form of input power fluc-
tuations with 5% maximum amplitude and randomly added
at each time step of the PDE integration process. We do not
present these results here because they are very similar to
those of Fig. 7.

Consider now the case of Fig. 8, where we report a series
of time evolutions obtained from the same glass-adhesive
bilayer system as in Fig. 3 but with the thermoelectric cooler
plate at 18 °C. The most relevant difference with respect to
signals of Fig. 3 is the almost uniform amplitude of the high-
frequency oscillations. It suggests the presence of a saddle
limit cycle instead of a saddle focus. The reconstructed phase
portrait shown in Fig. 9 for the 75.4-mW signal confirms that
a relatively large limit cycle has been generated through a
Hopf bifurcation of the saddle point. The cylindrical screw
moving away from the saddle cycle turns very close to one
of its unstable manifold branches, showing that such a cycle
has to positive characteristic multipliers. The embedding of
Fig. 9 has been done in the phase space defined byP(t),
^P(t1t)&2t , and^P(t)&20t , with t530 ms and the angular
denoting time averages. Chaos is now observed without the
requirement of being extremely close to homoclinicity and,
in fact, the time dynamics as a function of the incident light

FIG. 10. First-return maps representing the
phase-space coordinateP(t) for various signals
of Fig. 8. Input powers are~a! 61.6 mW,~b! 64.2
mW, ~c! 67.1 mW, and~d! 72.7 mW. Numeric
symbols indicate the number of high-frequency
oscillations contained in the orbit.
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power evolves as follows. There is a range of periodic oscil-
lations with a successively increasing number of high-
frequency oscillations. At a certain moment the signal be-
comes aperiodic~61.6 mW! and then is followed by the
alternate sequence of periodic and aperiodic signals that ends
with the homoclinic transition to another oscillating state
~not shown in the figure!. Aperiodic evolutions consist of
successive long-period oscillations containing different num-
bers of high-frequency peaks: one, two, and three peaks
~61.6 mW!; two and three peaks~64.2 mW!; three and four
peaks~68.3 mW!, four to seven peaks~72.7 mW!; and six to
thirteen peaks~75.4 mW!. The alternate sequence of periodic
and aperiodic regimes is a significant feature of homoclinic
chaos.

Using a symbolic notation, we can characterize the differ-
ent kinds of orbit structures by sequences of symbols such as
NmSn, wherem and n denote the number of consecutive
low-frequency and high-frequency oscillations, respectively.
N indicates the node fixed point from which the low-
frequency limit cycle originated andS indicates the saddle
limit cycle associated with high-frequency oscillations. Ape-
riodic wave forms are denoted byC@ ,# and their structure is
based on combinations of the sequence segments enclosed in
the square brackets. At the beginning, we were able to ap-
preciate a gradual transition from one orbit structure to the
next one, as may be seen in the 53.1-mW signal for the
N1S0→N1S1 transition, but the transitions become immedi-
ately abrupt without stable wave forms in between. Accord-
ing to the Poincare´ map model@4,7,8#, close enough to ho-
moclinicity, each periodic window appears and disappears
through a cyclic tangent bifurcation and a period-doubling
sequence, respectively. Nevertheless, the control parameter
noise prevents detailed observation of such bifurcations and
we have only appreciated intermittent evolutions just before
the periodic window appearance. This is the case of the
64.2-mW signal that may be related to the saddle-node bi-
furcation leading to the three-peaks periodic window~67.1
mW!. Another example is given by the 68.3-mW signal,
where the accumulation of successiveN1S4 oscillations de-
notes the proximity to the corresponding periodic window
~68.8 mW!.

A deterministic correlation between successive orbits is
now clearly evidenced in first-return maps. For instance, the
return maps of Fig. 10 represent the coordinateP(t) of in-
tersection points in a given Poincare´ section of the phase
portraits derived from various signals of Fig. 8. The Poincare´
section cuts the reinjection loop as indicated by a broken line
on the attractor shown in Fig. 9. Each map branch corre-
sponds again to orbits with a given number of high-
frequency oscillations and the symbols indicated on the re-
turn map representations describe such numbers. The case of
Fig. 10~b! corresponds to the 64.2-mW signal observed just
before the appearance of the periodic oscillation with three
high-frequency peaks. The form of the map points out
clearly the occurrence of a type-I intermittency associated
with the tangent bifurcation that will occur when the bisec-
trix reaches the branch with symbol 3 and the corresponding
periodic orbit then appears@Fig. 10~c!#. Multiple-branched
structures appear even more clearly in time return maps like
the ones shown in Fig. 11. The time map of Fig. 11~a! cor-
responds to the same signal as the space coordinate map of

Fig. 10~d!, while Fig. 11~b! corresponds to the 75.4-mW
signal with orbits containing 6–13 high-frequency peaks.

In conclusion, a variety of nonlinear dynamical phenom-
ena have been observed in the response of an optothermal
bistable device irradiated by a laser beam and the homoclinic
nature of such phenomena has been pointed out. Variation of
some device parameters has allowed us to obtain homoclinic
dynamics associated with saddle focus not fulfilling the
Shil’nikov condition, with saddle focus fulfilling that condi-
tion and with saddle limit cycles. Clear Shil’nikov-type
phase portraits have been reconstructed from time signals. In
the case of a saddle focus close to the Shil’nikov condition,
the attractor structure has been analyzed on proper Poincare´
sections and the phase-space operations underlying the ho-
moclinic dynamics have been evidenced. Two-stage return
map representations have been used to point out the localiza-
tion of noise effects on a given part of the phase portrait, i.e.,
where the reinjection flow reaches the saddle influence re-
gion, and to verify the internal correlation of orbits even in
the case that noise is able to interrupt deterministic evolution
between successive orbits. Homoclinic chaos has been
clearly pointed out in the case of a saddle limit cycle. for
which multiple-branched first-return maps have been ob-
tained from the corresponding time signals.
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FIG. 11. First-return time return maps for two cases of Fig. 8,
showing multiple branches:~a! 72.7 mW and~b! 75.4 mW.
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