PHYSICAL REVIEW E VOLUME 53, NUMBER 6 JUNE 1996

Homoclinic dynamics in experimental Shil'nikov attractors
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We report the experimental observation of Shil'nikov-type attractors in the reflection of optothermal non-
linear devices, evidencing homoclinic phenomena associated with a variety of saddle set configurations. Re-
current phase-space operations underlying the homoclinic dynamics are evidenced by analysis of proper Poin-
caresections. In the case of a saddle limit cycle, deterministic aperiodic evolutions are pointed out clearly by
means of high-order multibranched first-return mdfs.063-651X96)01106-3

PACS numbgs): 05.45:+hb, 42.65.Pc

I. INTRODUCTION points out a rather complex process that may involve accu-
mulated cascades of periodic windows bounded by tangent
In recent years the crucial role played by homoclinic or-bifurcations and period-doubling sequences, the creation of
bits in the mechanisms originating chaos in dynamical syssuccessive horseshoes, the occurrence of a variety of subsid-
tems has become apparé¢t{2]. Homoclinic orbits are tra- iary homoclinic connections, and other more subtle phenom-
jectories biasymptotic to a saddle limit set both forward andena[1,2]. The process appears to be extremely sensitive to
backward in time. The homoclinic orbit characterizes a rethe control parameter. The problem becomes more critical as
current mechanism for global folding of the phase spacethe saddle becomes closer to the Shil'nikov condition be-
while the saddle set provides stretching, folding, and con€ause the interval of the control parameter leading to com-
traction of the flow at a local level. According to the actual plex behavior then becomes narrower and closer to the ho-
saddle configuration, chaos may appear when a parameternsoclinicity point.
varied towards the homoclinicity condition. On the other hand, the evolution of &der-type attractors
The simplest and most clear situation yielding homoclinicinvolves homoclinicities of two different saddle sets and het-
chaos in dissipative systems is associated with the so-callegtoclinic connections between them. The process usually
Shil'nikov-type attractors. Such attractors usually arise incovers a large interval of the control parameter and the ob-
three-dimensional phase spaces from a growing periodic oiservation of aperiodic behaviors appears to be easier than in
bit that approaches an external saddle set to become hthe Shil'nikov-type case. As a matter of fact, experimental
moclinic to it. The saddle may be either an inward spiralingobservation of multiple-structure return maps has been re-
focus or a limit cycle of diameter lower than the homoclinic ported in the Belousov-Zhabotinskii reactiphl], in a laser
orbit radius. In cases of larger saddle cycles, the attractowith feedbac12], in a laser with a saturable absorlp&B—
evolves in a different way, yielding the so-called Rter-  15], in the plasma of a glow dischardj@6], and in an opti-
type attractors. The bending of the orbit is so large in theseally bistable device like the one here considergd. Ho-
cases that it may be reinjected close to the inner fixed pointnoclinic chaos has been also evidenced in a modified Van
from which it was originated. After the Hopf bifurcation this der Pol electrical oscillatof18], in a catalytic oxidation of
point has become an outward spiraling saddle focus and thusethanol[19], and during copper electrodissolutif20]. In
the attractor evolution may involve homoclinicities of two most of these experiments homoclinicity appears associated
kinds associated with either the internal or the externalvith an outward spiraling saddle set and the observed phase
saddle set and heteroclinic connections between ff&edl.  portraits are in the form of folded bands. Only the experi-
In any case a theorem by Shil'nik¢®] proves that complex ment on a laser with feedback by Arecddtial. [12] corre-
dynamics will occur near homoclinicity when an inequality sponds to an inward spiraling saddle focus even if, in this
is satisfied between the eigenvalues of the linearized flowase, the trajectory visits the neighborhoods of other two
around the saddle point, i.e., if the real eigenvalue is larger isaddle points.
modulus than the real part of the complex eigenvalue. Com- In this paper we report the experimental observation of
plex behavior always occurs when the saddle set is a limiShil'nikov-type attractors in the response of an optothermal
cycle[6]. nonlinear device irradiated by a laser beam, evidencing ho-
Attractor structures and bifurcation sequences in homoclinic phenomena associated with a variety of saddle set
moclinic transitions have been investigated by means of twoeonfigurations, i.e., focus points either fulfilling or not the
dimensional Poincarenaps constructed by considering the Shil'nikov condition and limit cycles generated by Hopf bi-
linear evolution near the saddle and a nonlinear reinjectioriurcation of the saddle point. Particular emphasis is given to
mechanism associated with the homoclinic connedigii—  the case of a saddle point fulfilling closely the Shil'nikov
10]. Such a kind of construction yields one-dimensional first-condition and providing really clear phase portrait structures
return maps in the strong area contraction limit, which con-of the Shil'nikov type. The recurrent phase-space operations
sist of either multiple humps or multiple branches accumu-underlying the homoclinic dynamics are pointed out by
lating towards the homoclinicity point and which constitute aanalysis of proper Poincamections and a two-stage return
clear signature of the homoclinic bifurcation. Map analysismap is used to show how critical the noise influence on the
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deterministic evolution is. Good agreement is found withphase space is the one defined by the partial phase shifts
predictions of a Poincarmap mode[9]. In the case of ho- associated with the various layg¢22]. We have also shown
moclinicity to a saddle limit cycle, deterministic aperiodic that the PDE system may be reduced téth-order model of
evolutions are pointed out clearly by means of high-orderordinary differential equation€ODES that involves the par-
multibranched first-return maps. tial phase shifts as variables and exhibits local and global
dynamics very similar to the ones of the original sys{@3).
A comment is worthwhile concerning materials exhibiting
Il. OPTOTHERMAL NONLINEAR DEVICE phase-shifts effects with different inertia with respect to ther-
The nonlinear device is based on the so-called optothefM@l excitation24]. In most materials, mechanical expansion
mal bistability with localized absorptiofBOITAL ) [21] and and_ re_:fracnve mdex variation take place 5|_rnultaneously_ and
consists of a Fabry-Fet cavity where the input mirror is a their _Ilght phase_—sh|ft effects are _characterlzec_i by the single
partially absorbing film, the rear mirror is a high-reflection COefficient resulting from the additidior subtractionof par-
dielectric coating, and the spacer between mirrors is dial coefficients. But this is not the case for some composite

multilayer of transparent materials having alternatively op-materials in which mechanical expansion seems to work
posite thermo-optic effects. When illuminated by a light slower than refractive index variations. Such a kind of ma-

beam, the interferometer response is affected by a nonline&¢"ial introduces two time-delayed phase-shift effects that, on
feedback loop involvingi) light absorption in the input mir- the other hand, may be competing since usually such mate-
ror film and the consequent heat propagation from the localli2lS have a negative thermo-optic effect. As a consequence,
ized source through the cavity spacif, temperature effects layers of these materials introduce additional degrees of free-

on the cavity optical length by thermal expansion and refracdom within the BOITAL cavity and effective dimensions

tive index variation, andiii) light interference effects where higher thanN may be obtained wittN-layer spacers. It is

absorption takes place. Nonlinearity is exclusively contained€@lly useful from the experimental point of view because the
in the functionA(y) describing the interferometer absorp- lower the number of layers the easier the device manipula-

tion as a function of the round-trip phase shifiand related 10N On the other hand, the ODE model may be easily ex-
to the Airy function of the interferometer. The device non-€nded to describe BOITAL systems containing such materi-

linearity enhances with the interferometer absorption con@!S- In that case the given layer is described by two partial

trast, which requires proper design of the input reflectivePase shifts, each one subject to the same dynamic equation

film, and with spacer parameters determining the feedbacRUt with proper adjustments on the relaxation time constant

loop efficiency, i.e., thicknesses, thermal and thermo-opti@"d thermo-optic coefficient. _ .
coefficients of the multilayer material1]. The BOITAL systems exhibit a rich variety of homoclinic

The nonlinear feedback is responsible for the multistable?N€nomena. In the case of bidimensional devices, the occur-
stationary response of BOITALtalons and, in the case of '€NCe of oscillations through a Hopf instability and a variety

multilayer spacers, is affected by the competing phase-shiﬁ’f homoclinic bifurcations without complicated orbit struc-
contributions of the various layers. The relative position ofturé have been observed both numerically and experimen-
the layers with respect to the localized heat source introducd@!ly [25]- This paper deals with tridimensional systems and
time delays between such contributions and, in this way, it i$"€ experimental results show the occurrence of Shil'nikov-
possible to have sustained oscillations and other sorts of ifYP€ attractors associated with a variety of saddle sets. In a

stabilities in the response of the system. Thus time dynamicB'€Vious paper we have shown that the same kind of device
in multilayer BOITAL devices is exclusively based on heat MaY originate folded chaotic bands of thesgter type(17].
propagation from the absorbing mirror through the cavityIn fact, both experiments and numerical simulations point
spacer, while light provides an instantaneous nonlinear feedUt clearly strong similarities between the dynamics exhib-
back by testing the spacer temperature through its own phad€d Py the third-order system, currently known as the
shift and transferring such information to the localized heafXeSSler mode[26], and by the tridimensional BOITAL sys-
source by means of interference effects. tems when a unique pair of saddle-node points are involved.

Under some simplifying assumptions, the BOITAL cavity The mathematical _origin of guch similarities has been evi-
with a multilayer space may be described by a set of homod€nced by comparing canonical forms of both the BOITAL
geneous heat equations subject to the proper continuity argird-order ODEs and Resler model$23].
boundary conditions, of which the one describing the local-
ized hea_t source is nonloc_al and _nonlinEib;_?]. The station- Il ELEMENTS OF A POINCARE  MAP MODEL
ary solution of this partial differential equatiRDE) system
as a function of the incident intensity yields a multivalued A useful tool for analysis of homoclinic bifurcations is
branching diagram with features depending on the interferoprovided by Poincarenaps constructed by decomposing the
metric function, but not on the multilayer structure. The dynamics into two distinct stages, i.e., the linear evolution
spacer parameters affect the stationary branching diagramear the saddle characterized by the corresponding eigenval-
through a scale factor only. The linear-stability analysis pointues A and p+iw, and a nonlinear reinjection mechanism
out that the effective dimension of the dynamical problemassociated with the homoclinic connectiph7,8. Such a
may be considered equal b, the number of layers into the kind of Poincaranap has been generalized recently to permit
cavity spacer, and that the system may experience up tihe simultaneous description of homoclinic tangencies to ei-
N-1 Hopf bifurcationd22]. Extensive numerical simulations ther a point or a periodic orbit9,10.. We introduce here
for N up to 3 allowed us to verify the linear-stability conclu- some elements of this map for the case of a focus point
sions and to deduce that a suitable basis for the reducdaecause they will be used in the analysis of experimental
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FIG. 1. Schematic representation of the Poincarap model

used to characterize the homoclinic bifurcation associated with an 49.8 mW
inward spiraling saddle focus.
results. Using cylindrical coordinates centered on the point
and considering the scheme outlined in Fig9), we define
the first stage ab(r=1,¢,,2,)=(r,,®,,z=1), with .ﬁ.
S
rh=expipty), (1a)
©h=ont wtin , (1b) FIG. 2. Time evolution of the reflected power and reconstructed
phase portrait for different incident light powers on the glass-
where silicone-glass system at 22°C. The signal at 49.8 mW includes a
transient illustrating the homoclinic transition to a different oscillat-
i 1 ing state.
ty=— X Inz, (2

experiments and numerical simulations suggest as reasonable
represents the flying time within the cylinder. Within the t0 suppose the reinjection time as given by
linear region, the saddle stable manifold remains contained
in thez=0 plane, while the unstable manifold goes along the th=T°= B(z,41—b)=T°®— Bfr cosp/cosy, 4
z axis. According to numerical simulatiof22] and experi-
mental attractors, in which strong contraction in a certainwhereT€ is the reinjection time on the unstable manifold and
direction is evident, the second stage is defined as the mapis a factor characterizing some time spread in proportion to

G(r},¢hz=1)=(r=1,¢n11,Zn+1), With the z distance between th_e given trajeptory apd _tr_le unstgble
manifold. If the external time spread is not significant with
Z,,1=Db+fr]cosp/cosy, (3a)  respect to the total return time, it is reasonable to assume
t® as a constantl2] and the first-return map may then be
©ni1=—(Zy.1—b)tany, (3b) characterized by the internal time map derived from EBk.

(3a), and(1) as
where full contraction along thg axis is assumed, the factor

f<1 describes a global compression in the section plane, the i 1 i

angle y describes some rotation of the contracted flow, and ~ tn+1= — 3 IN(O+fexppty)

b gives thez position at which the unstable manifold im- _ _

pinges on the lateral surface with respect to the stable mani- X coq wt, —[exp(—\t,) —b]tany}cosy).  (5)

fold, i.e., b=0 means homoclinicity. The strong contraction
limit implies that mapG reinjects always in a little straight Nevertheless, if significant, the external time spread may be
segment andy is the angle this segment forms with tae pointed out by analyzing internal orbit correlations as the
axis. The full contraction implies also that the dynamics mayones expressed by the two-stage map
be fully described by one-dimensional maps as the ones ob- .
tained in first-return representations of either time returns or t&(t),) = T°— Bf expl pt},) cog wt},— [ exp( — A t},) — b]tany}
phase-space coordinates.

One-dimensionallD) return maps for the space variables X cosy, (6a)
may be easily derived from Eqg&3), (1), and(2), while ad-
ditional assumptions concerning the external reinjection time

. o t
t® are necessary in order to obtain time return maps. Both *1( )=

n{ b+ E(T )) (6b)
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FIG. 3. Time evolution of the reflected power and reconstructed 03 mW
phase portrait for three incident powers on the glass-adhesive sys-
tem at 25°C. 2mW
—

where the internal and external times are given by E2js.

and(4), respectively. As it will be shown below, such a kind  FIG. 4. Four Poincarsections of the 37.2-mW phase portrait of

of two-stage representation is also useful for analyzing nois€ig. 3. Each section contains 138 points while the represented phase
effects upon the dynamical evolution. portrait includes four orbits only.

length while the metallic mirror had external and internal
IV. EXPERIMENTAL DETAILS reflections of 0.17 and 0.23, respectively, and transmission
) ) ) . of 0.46. The cavity finesse was really low, but it must be
Experiments were performed with nonlinear devicesstressed that cavities with absorbing input mirrors behave
based on two different spacer structures within the cavityery differently from the usual lossless case. Contrast and
determined by a partially absorbing metal film and a high-finesse may be independent in cavities with input mirror ab-
reflection dielectric mirror. One device was spaced with asorption and high contrast may be achieved if the transmis-
glass—silicond27] —glass trilayer of thicknesses 4Q6m, sion and reflection phase shifts of the absorbing film are such
250 um, and 1 mm, respectively, and the other with a glass-that the transmission and reflection of the interferometer
optical adhesivg28] bilayer structure of 140 and 590m, present in-phase intensiti¢21]. In our devices the output
respectively. In the case of glass, thermal expansion works astensities behave with a relative phase of aboutrGahd the
a positive effect (10° K 1), while the silicone and the reflection varies from 0.07 to 0.88 while the transmission is
optical adhesive produce negative phase-shifting effects eglways lower than 0.005. _ _
sentially due to refractive index changes. Relative variations The device was irradiated with a continuous-wave laser
of the optical path with temperature for these materials wer@&am of 488-nm wavelength focused to a 0.3-mm-diam spot,
estimated to be-4.7x10"% and —3.2x10°4 KL at 22  the reflect.ed light was .d_etected by means of a photodiode,
°C, respectively. No separate estimations for thermal expa __nd the signal was d_|g|t|zed and storeo_l in a computer. The
sion and thermo-optic coefficients were performed. The op-Ight beam was provided by an argon-ion laser and power

tical adhesive exhibits thermal expansion and the thermgluctuations of the output beam were reduced to less than

optic effect with different time inertid24] and the glass- 0.1% by means of an electro—opti_c. modulator subject_ed to an
adhesive bilayer system then behaves tridimensionally. O pt|cr_;1l feed_back loop. The St?‘b"'ze‘j b_ear_n was circularly
the other hand, the phase-shifting coefficients exhibit a sigP°arized with a\/4 plate. The light polarization had no role

nificant temperature dependence and such a fact offers a waly the experiment because the n_onlmear dgvpe contained
for fine adjustment of the spacer structure. With this aim, thdSCtropic materials only and the light beam incidence was

nonlinear mirror was placed on a thermoelectric cooler de@/Most normal. Nevertheless, thé4 plate, jointly with the

vice providing a range of background temperatures. output pqlarlzer of the modu]ator, worked as an .optlcal ISo-
The cavity mirrors were a nickel-chron(@0:20 film of 6 lator avoiding any return of light to the laser cavity and the

nm thickness coated on the first layer of glass and &£°nseguentinstabilities.

TiO 2—$|02 mu_ltllayer stack coated either on the rear glass V. RESULTS AND DISCUSSION

layer, in the trilayer structure, or on a 1-mm glass substrate

external to the cavity, in the bilayer system. The dielectric We report here some significant results illustrating ho-

mirror reflection was high % 0.98 for the operating wave- moclinic bifurcations associated with a variety of saddle in-
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FIG. 5. Return time versus position for the points of the Poin- > A
caresection denote® in Fig. 4. ~ SeTs :
-~ 3
variant sets. Figure 2 presents time evolutions of the re- 3
flected light powerP for different values of the incident t’ 1(t"n) j
power and for the case of the glass-silicone-glass trilayer. “"
The interferometric origin of the signal is responsible for 0'40.4 ' ; 16
some details that have to be taken into account in order to t (S) ’
understand the observed wave forms fully. In effect, at light
powers such that nonlinear effects sustain phase-shift varia- 1.75
tions larger than #, the reflected power varies between its .
maximum and minimum values with a sudden folding at - U - (C)
. . R . a R
these points. Such folds are absent in the time evolution of 5 P
the phase shifty and they have no dynamical significance. e P8 (t’)
Figure 2 shows also projected phase portraits obtained & n\n
from the time signals by an embedding technique. The rep- (oW
resentations have been done in the three-dimensional space p¢ (te )
defined byP(t), P(t+7), and P(t+27), with 7 almost 1 n+1" el
equal to one-quarter of the small oscillation periad=Q0 “
ms in the case of Fig.)2The reported phase portraits usually 1.5 —
represent five complete orbits, even if the recorded time sig- 04 t (S) 16

nals contain always more than 100 long period oscillations.
Notice the influence of thé(t) interferometric folding in
the reconstructed phase portraits. FIG. 6. Return map representations for the 37.2-mW sigfaal:
The presence of an inward spiraling focus, at which théfirst-return time map for sectio@, (b) two-stage time return map
orbit gradually approaches, is clear from both the time evobetween sectionB and C, and(c) space coordinate versus flying
lutions and phase portraits of Fig. 2. The number of hightime for the two-stage map. Numeric symbols(ly) indicate the
frequency oscillations and the period of the low-frequencynumber of high-frequency oscillations in the corresponding orbits.
oscillation increase up to the homoclinic transition at 49.8
mW, in which the orbit is destroyed and the system goesto a A different situation may be seen in Fig. 3, where we
different oscillating state associated with another stationarpresent results obtained with the glass-adhesive bilayer sys-
solution of the multistable branching diagram. The signalgem and for a thermoelectric cooler temperature of 25 °C.
always appear to be periodic. In effect, for the signal closePhase portraits have been reconstructed with an embedding
to homoclinicity(49.2 mW), the greatest Lyapunov exponent delay of 30 ms. The saddle eigenvalues estimated form the
calculated with the algorithm of Ref29] is —0.21T 1, case closer to homoclinicity (37.2 m\Whave been found
whereT=0.36 s denotes the period of the small oscillations.equal to 4.4 and-3.7+i66.1 s *. Such eigenvalues verify
On the other hand, by assuming a linear motion around théhe Shil’'nikov condition very closely, suggesting that chaos
saddle governed by eigenvaluesand p*iw, we obtained could appear very near homoclinicity only. The aperiodic
w=17.2 st andp=—2.4 s from the time signal, and signal at 37.2 mW contains orbits including 5-14 high-
A=0.01 s ! from a projection of the phase-space flow overfrequency oscillations and the corresponding greatest
a direction close to the unstable saddle dimension. It is cledryapunov coefficient has been found to #®.12T 1, with
that such eigenvalues do not fulfill the Shil'nikov condition T=95 ms denoting the period of high-frequency oscillations.
[p/\|<1. Details of the attractor structure may be appreciated in the
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same with random noise introduced on the phase-
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Poincaresections shown in Fig. 4, where each section concenter indicate how close the system is to homoclinicity.
tains 138 intersection points. The sections correspond to difFurthermore, by proper numbering of intersection points we
ferently oriented planes and have been correspondingly emhave verified that the spiral points appear almost ordered
larged. The scales in mW indicate the metric lengthaccording to the previous longitudinal position on section
associated with each represented plane. Secocorre- D, j.e., the spiral points iA move away from the center
sponds to a section within the conical screw, close to thccording to the distance to one of the attractor ends in sec-
saddle focus, and normal to the unstable manifold. Sectiofon p. |t then seems clear that the saddle stable manifold is
B is located at the end of the screw, normal also t0 the,qry close to this end of the attractor sectnComplemen-
unstable saddle manifold, and the representation is enlargggy information is provided by Fig. 5, where the return time
20 times with respect té\. SectionsC and D have been  fom D to D is represented versus the coordinBi@) of the
taken pormal to the ﬂow._The aFtractqr section area is Minigeparture points. The time asymptotic divergence confirms
mum in C and we consider this point as the end of thepgy close to homoclinicity the system is.
nonlinear reinjection initiated @& and the beginning of the From sectionA to C the flow section strongly contracts
saddle influer_lce region. The spiral structure cIearI_y seen iWith a slight asymmetry denoting stronger contraction in a
sectionA confirms the presence of a saddle-focus singularityyiyen direction. The spiral structure vanishes along the flow
governing the flow in this phase-space region and, accordingnder the combined action of contraction and noise and we
to the Poincarenap model, its well defined shape indicates ggtimate the transverse size of sectdas essentially due to
that the reinjection flow reaches the saddle influence regiofgise. FromC to D the attractor section exhibits one-
with a narrow line section almost parallel to the unstablegimensional expansiofstretching that may be associated
manifold, i.e., with a well definitep, value. In effect, elimi- \yith saddle repulsion because the repulsion rate enhances
nating the time in Eqs(1), one obtains the parametric rela- ity the distance to the saddle attracting manifold.
tion The flow contraction points out that BOITAL systems are
strongly dissipative and the more pronounced contraction
reoy P along a given direction suggests one-dimensional Poincare
n(en) exr{ (¢n @n)} (7 . e
0] sections and the consequent possibility of 1D return maps.
Nevertheless, Fig. (@) presents a first-return map obtained
that applies for any constant plane within the linear region. for PoincaresectionC by representing the return time of an
By assuming a fixed, value, the representation of E(f)  orbit as a function of the return time of the previous orbit and
for a given range ofp;, values describe a segment of spiral the absence of any structure suggests that noise is strong
centered on the axis, i.e., on the unstable manifold. The enough to interrupt deterministic correlations between suc-
radius attenuation per spiraling turn provides a direct estieessive orbits at high degree. Thus, even if a really low noise
mate forp/ w in agreement with the values obtained from thelevel is apparent in the time evolution signals, the strong
time signal. The length of the spiral and its approach to thdlow contraction makes its influence especially crucial where
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FIG. 8. Time evolution of reflected power for different incident powers and for the same device as in Fig. 3, but at 18°C.

the attractor section seems dominated by noise, i.e., in seemplitudes of 1.X10° 4, 0.3, 310 %, and 0.3, respec-
tion C of Fig. 4. The localization of noise effects upon the tively. Figure 7c) shows that the ranges af andr/, values
attractor is pointed out by the two-stage time return map otover intervals of about 810 % and 1.5<10" 3, respec-
Fig. 6(b). In this representatiot], is the internal time spent tively, and it may be then realized that the noise amplitude
by a given orbit around the saddle, from sectiaht® B, and  introduced represents 20% of such intervals.

ts is the reinjection time fronB to C for the same orbit. Similar but complementary information is obtained from
Notice that intersection with the bisectrix have no signifi-the experimental map of Fig.(6, where the coordinate
cance in this two stage return representation. The wellP(t) of points of either sectioB or sectionC is represented
defined structure ofg(t;) indicates that the inner motion as a function of the previous flying time fro@to B or from
determines the following reinjection time with a very limited B to C, respectively. The coordina(t) is close to the long
influence of noise, while the broad appearance;gf; (t;)
reflects a strong noise influence on the next internal time as a
function of previous external time. Each hump appearing on
to(t,) corresponds to orbits containing a given number of
high-frequency oscillations and then a numeric symbol may
be associated with it.

The two-stage time return map is reproduced very well by
the Poincaremap model, as shown in Fig. 7. Figuréay
represents EQs.(6) with p=—-3.7, w=66.1, A\=4.4,
b=3x10"4 B=65, f=0.12, y=, andT®=1.1. A con-
stant equal to- 1.1 has been added to the internal time given
by Eq.(6b) to compensate for differences in Poincaeetion
positions on the theoretical and experimental phase portraits.
Figure 1b) shows the influence of a random noise intro-

duced on the phase-space varialdgs ¢,, r/, and ¢, at FIG. 9. Reconstructed phase portrait from the 75.4-mW signal
each recurrent step of the map calculation, with maximurof Fig. 8.
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dimension of the attractor secti@and gives maps with the jection coordinatez,,; than on the external tim&. Thus
best defined structure. On the basis of the Poincasp t° even maintains a good correlation With [Fig. 7(b)],
m.odel, the representations of Figcb may be associated \ypile Z,1(t%) presents significant vertical broadeniffgg.
with the equations 7(d)]. This z broadening is of the order of both the range of
z values and the homoclinicity parameterand its conse-

’ r_ i i ntiy—
r'1COSpy =exHlpty) Cof wty — [eXp( —Aty) —b]tamy}, guences on the next orbit evolution may be strong enough to

(8 alter the deterministic evolution.
te_Te We have also investigated the two stage map representa-
Zyi1=b— , (8p)  tions of Fig. 7 in numerical time evolutions obtained by in-
B tegration of the BOITAL PDE systeri22]. In this case,

, - , noise has been introduced in the form of input power fluc-
which have been represented in Figec)and 4d), without  yati0ns with 5% maximum amplitude and randomly added
and with the addition of noise, respectively. The relative ver4; aach time step of the PDE integration process. We do not

tical positions of the two map structures have no significance,esent these results here because they are very similar to
when compared to the experimental representation of Fignose of Fig. 7.

6(c). It is seen that, according to the experiment, the noise consider now the case of Fig. 8, where we report a series
exerts a strong influence @, 4(t7), but not on the shape of ¢ time evolutions obtained from the same glass-adhesive
rCOSpy(t,). Thus we infer that the longitudinal position on pilayer system as in Fig. 3 but with the thermoelectric cooler
sectionB is well determined as a function of the previous plate at 18 °C. The most relevant difference with respect to
flying internal time, without a significant influence of noise, signals of Fig. 3 is the almost uniform amplitude of the high-
while any deterministic correlation between the reinjectionfrequency oscillations. It suggests the presence of a saddle
position onC and the previous reinjection time seems lost. |imit cycle instead of a saddle focus. The reconstructed phase
A low level of noise may cause strong consequences foportrait shown in Fig. 9 for the 75.4-mW signal confirms that
just the same reason that chaotic dynamics may arise from relatively large limit cycle has been generated through a
the extreme sensitivity of the flow when it reinjects towardsHopf bifurcation of the saddle point. The cylindrical screw
the saddle point close to homoclinicity. A bit of noise on the moving away from the saddle cycle turns very close to one
reinjection coordinatez, causes hesitation between orbits of its unstable manifold branches, showing that such a cycle
with a different number of high-frequency oscillations andhas to positive characteristic multipliers. The embedding of
the consequent enlargement of the internal time range. NeFig. 9 has been done in the phase space defineB(by,
ertheless, the internal tintg and the corresponding outgoing (P(t+ 7)),,, and(P(t)),,, with 7=30 ms and the angular
position from the saddle influence regiaticosp, remain  denoting time averages. Chaos is now observed without the
very well correlated Fig. 7(d)]. In the reinjection step, the requirement of being extremely close to homoclinicity and,
relative influence of noise is more pronounced on the reinin fact, the time dynamics as a function of the incident light
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power evolves as follows. There is a range of periodic oscil- 140
lations with a successively increasing number of high- ’ 4, 5 6
frequency oscillations. At a certain moment the signal be- ] : s (a)
comes aperiodid61.6 mW and then is followed by the
alternate sequence of periodic and aperiodic signals that ends
with the homoclinic transition to another oscillating state 3
(not shown in the figure Aperiodic evolutions consist of | / -
successive long-period oscillations containing different num- S . o
bers of high-frequency peaks: one, two, and three peaks ]
(61.6 mW; two and three peak&4.2 mW; three and four 05—
peaks(68.3 mW, four to seven peak&2.7 mW; and six to

thirteen peak$75.4 m\W. The alternate sequence of periodic t'n (S)
and aperiodic regimes is a significant feature of homoclinic
chaos.

Using a symbolic notation, we can characterize the differ-
ent kinds of orbit structures by sequences of symbols such as
N™S", wherem and n denote the number of consecutive . ... (b)
low-frequency and high-frequency oscillations, respectively. '
N indicates the node fixed point from which the low-
frequency limit cycle originated an8 indicates the saddle - L
limit cycle associated with high-frequency oscillations. Ape- K Do
riodic wave forms are denoted I8, ] and their structure is ] ..
based on combinations of the sequence segments enclosed in
the square brackets. At the beginning, we were able to ap- 1w ' ;
preciate a gradual transition from one orbit structure to the '
next one, as may be seen in the 53.1-mW signal for the tn (S)
N1S’—NIS! transition, but the transitions become immedi-
ately abrupt without stable wave forms in between. Accord- _ . .
ing to the Poinceirenap model[4,7,8], close enough to ho- FIQ. 11. Elrst-return time return maps for two cases of Fig. 8,

L L - . showing multiple branchesa) 72.7 mW andb) 75.4 mW.
moclinicity, each periodic window appears and disappears
through a cyclic tangent bifurcation and a period-doubling ) )
sequence, respectively. Nevertheless, the control parametgfd- 10d), while Fig. 1Xb) corresponds to the 75.4-mW
noise prevents detailed observation of such bifurcations andignal with orbits containing 6—13 high-frequency peaks.
we have only appreciated intermittent evolutions just before N conclusion, a variety of nonlinear dynamical phenom-
the periodic window appearance. This is the case of th&€na have been observed in the response of an optothermal
64.2-mW signal that may be related to the saddle-node pibistable device irradiated by a laser bear_n and the hor_no_cllmc
furcation leading to the three-peaks periodic wind(v.1 nature of ;uch phenomena has been pointed oup Varlatlor_1 _of
mW). Another example is given by the 68.3-mW signal, SOMe device parameters has allowed us to obtain homoclinic
where the accumulation of successNéS? oscillations de- dynamics associated with saddle focus not fuffilling the

notes the proximity to the corresponding periodic windowShil'nikov condition, with saddle focus fulfilling that condi-
(68.8 mW). tion and with saddle limit cycles. Clear Shil’nikov-type

A deterministic correlation between successive orbits ihase portraits have been reconstructed from time signals. In
now clearly evidenced in first-return maps. For instance, théhe case of a saddle focus close to the Shil'nikov condition,
return maps of Fig. 10 represent the coordingfe) of in- the attractor structure has been analyzed on proper Poincare
tersection points in a given Poincasection of the phase S€ctions and the phase-space operations underlying the ho-
portraits derived from various signals of Fig. 8. The PoincardMoclinic dynamics have been evidenced. Two-stage return
section cuts the reinjection loop as indicated by a broken lin&"@p representations have been used to point out the localiza-
on the attractor shown in Fig. 9. Each map branch correlion of noise gff_ect; on a given part of the phase.portralt, i.e.,
sponds again to orbits with a given number of high_where the reinjection flow reaches the saddle influence re-
frequency oscillations and the symbols indicated on the redion, and to verify the internal correlation of orbits even in
turn map representations describe such numbers. The caselBg case that noise is able to interrupt deterministic evolution
Fig. 10b) corresponds to the 64.2-mW signal observed jusP€Ween successive orbits. Homoclinic chaos has been
before the appearance of the periodic oscillation with thre&'€arly pointed out in the case of a saddle limit cycle. for
high-frequency peaks. The form of the map points oythich multiple-branched first-return maps have been ob-
clearly the occurrence of a type-l intermittency associated@in€d from the corresponding time signals.
with the tangent bifurcation that will occur when the bisec-
trix reaches the branch with symbol 3 and the corresponding A
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